

®

November 1995, ver. 1 Application Note 52

Implementing RAM
Functions

in FLEX 10K Devices

Introduction The Altera FLEX 10K family provides the first programmable logic
devices (PLDs) that contain an embedded array. The embedded array is
composed of a series of embedded array blocks (EABs) that can efficiently
implement complex custom functions, including RAM. On-board RAM is
useful for designers who require memory in their designs but do not wish
to use an additional memory device because of speed requirements, I/O
pin conservation, or printed circuit board (PCB) space limitations.

This application brief discusses how to implement synchronous or
asynchronous blocks of RAM in FLEX 10K designs.

EAB
Architecture

Each FLEX 10K EAB contains 2,048 bits of RAM with a DATA bus up to 8
bits wide and an ADDRESS bus up to 11 bits wide. Unlike the distributed
RAM in field-programmable gate arrays (FPGAs), the FLEX 10K EAB is
designed to ensure predictable, easy-to-use timing. The EAB Write Enable
signal (WE) can be synchronized with the input Clock, or it can be
asynchronous. The EAB also contains input, output, and address registers
that can be used to synchronize a design. EAB outputs can be registered
or combinatorial. Registered outputs can be used to pipeline a design,
increasing system performance. Figure 1 shows the EAB block diagram.
Altera Corporation 1

A-AN-052-01

AN 52: Implementing RAM Functions in FLEX 10K Devices

Figure 1. EAB Block Diagram

Using EABs The EAB RAM size is flexible; therefore, you are not limited to one RAM
configuration such as 2,048 words of 1 bit each. Figure 2 shows a graphical
representation of the flexible RAM sizes. The width of the DATA and
ADDRESS buses varies with the size of the RAM. You can configure an EAB
for any size with standard EDA tools or with Altera’s MAX+PLUS II
development system.

D

D Q

WE

ADDRESS

DATA
In

D Q

D Q

D QDATA
Out

EAB

DATA

ADDRESS

WE

Input
CLK

Output
CLK

Write
Pulse
Circuit

8, 4, 2, 1
Q

8, 4, 2, 1

8, 4, 2, 1
8, 4, 2, 1

8, 4, 2, 1

11, 10, 9, 8

11, 10, 9, 8

11, 10, 9, 8

RAM/ROM

256 × 8
512 × 4

1,024 × 2
2,048 × 1

8, 4, 2, 1
2 Altera Corporation

AN 52: Implementing RAM Functions in FLEX 10K Devices

Figure 2. EAB Memory Configurations

Cascading EABs for Wider RAM

The MAX+PLUS II software automatically cascades EABs to implement
larger blocks of RAM for designs that require blocks of RAM wider than
an EAB configuration (see Figure 3). Cascading FLEX 10K EABs does not
require additional logic; therefore, cascaded and non-cascaded EABs have
the same access time.

Figure 3. Cascaded EABs

256 × 8 512 × 4 1,024 × 2 2,048 × 1

ADDRESS[8..0]
DATA[3..0]
DATA[7..4]

WE
Output CLK

Input CLK

ADDRESS[8..0]

DATA[7..4]
WE
Output CLK
Input CLK

512 × 4
RAM & Control Logic

ADDRESS[8..0]
DATA[3..0]

WE
Output CLK
Input CLK

512 × 4
RAM & Control Logic

Q

Q

Q[3..0]

Q[7..4]
Altera Corporation 3

AN 52: Implementing RAM Functions in FLEX 10K Devices

Unlike FLEX 10K EABs, distributed RAM in FPGAs only has predictable
access times for small, individual RAM blocks, such as 16 × 1. As the size
of the FPGA RAM is increased, additional RAM blocks are needed and the
access times become significantly slower. For example, a typical 256 × 8
RAM block in an FPGA may require a 33-ns access time and use a
significant number of device resources in addition to RAM.

Multiplexing EABs for Deeper RAM

Each EAB can address 2,048 words with 11 address lines. To address more
than 2,048 words, the MAX+PLUS II software automatically multiplexes
the outputs of multiple EABs and uses the multiplexer select line as an
additional address line. In Figure 4, two EABs—each configured for a
block of 2,048 × 1 RAM—are multiplexed to create a block of 4,096 × 1
RAM. Multiplexing EABs to create blocks of RAM deeper than 2,048
words requires additional logic on the outputs, which causes a small
additional delay.

Figure 4. Multiplexed EABs

Synchronous RAM

When using a FLEX 10K EAB for synchronous RAM, the DATA and
ADDRESS signals are registered in the EAB. When you use an EAB for
synchronous RAM, all control signal timing, including the WE signal, is
implemented in the EAB. Generating the WE signal within the EAB
eliminates potential glitches that can corrupt data. When a high WE signal

CLK
WE

ADDRESS[10..0]
DATA

EAB
2,048 × 1

Logic Array

ADDRESS11
Multiplexer Select

EAB
2,048 × 1

Logic Array

CLK

ADDRESS[10..0]
DATA

WE

CLK

ADDRESS[10..0]
DATA

WE

11

11
4 Altera Corporation

AN 52: Implementing RAM Functions in FLEX 10K Devices

is clocked into the EAB, circuitry inside the EAB generates a write pulse
that meets setup and hold times for the DATA and ADDRESS inputs. Because
the WE signal allows ADDRESS inputs to change while WE is high, you do
not have to de-assert WE to write on consecutive Clock cycles. The WE
signal automatically pulses high on each Clock cycle.

Asynchronous RAM

You can configure the FLEX 10K EAB for asynchronous RAM using the
following guidelines:

■ The WE signal must be timed to avoid glitches that can unintentionally
overwrite the RAM.

■ The WE signal must meet the setup and hold times for DATA and
ADDRESS.

■ The ADDRESS inputs cannot be changed while WE is high.

Emulating ROM

To configure the FLEX 10K EAB to emulate ROM, you must define the
contents of the EAB with a Hexadecimal (Intel-format) File (.hex) or an
Altera Memory Initialization File (.mif). Because the EAB is not write-
protected, the start-up data can be reconfigured during device operation,
which makes the EAB more flexible than true ROM.

Software
Support

You can create designs for FLEX 10K devices using functions from the
library of parameterized modules (LPM) with MAX+PLUS II and
standard EDA tools, or you can use non-LPM-based Synopsys or
Viewlogic logic synthesis tools.

MAX+PLUS II & Standard EDA Tools

MAX+PLUS II and standard EDA tools (from vendors such as Mentor
Graphics, Intergraph, Viewlogic, and Cadence) take advantage of the
LPM standard, a fast-emerging industry standard. Each module in the
library has parameters, i.e., variable attributes, that permit you to
represent a wide variety of logic functions.

The LPM parameters are defined in the design entry tool. For example, a
graphic editor might display a window for entering parameters when an
LPM symbol is chosen. The chosen parameters are then saved for
synthesis. In text editors, the LPM function is referenced in the design file
and the parameters are set when the function is used.
Altera Corporation 5

AN 52: Implementing RAM Functions in FLEX 10K Devices

For example, you can use EDA tools to create a block of RAM and specify
the parameters for the width (LPM_WIDTH) and address width
(LPM_WIDTHAD) of the RAM. The function and the parameters are passed
to the MAX+PLUS II software via an EDIF netlist file. MAX+PLUS II
synthesizes the design for the FLEX 10K architecture, automatically
cascading EABs to form wider RAM, implementing registered inputs for
synchronous RAM, or using additional resources from the FLEX 10K logic
array to implement RAM deeper than 2,048 words.

VHDL

With Mentor Graphics’ Autologic II and Cadence’s Synergy, you can use
VHDL to declare LPM entities, such as RAM, with generics that allow
parameters to be passed down from upper-level files. You can specify
generics with GENERIC MAP aspects in an upper-level file, and synthesize
your design with a third-party synthesis tool. Then, you can pass the
synthesized design with the LPM functions and parameters to the
MAX+PLUS II software via an EDIF netlist file. See Figure 5 for an
example of RAM in top-level VHDL code.

Figure 5. Example of RAM in VHDL

ARCHITECTURE <architecture_name> OF <entity_name> IS

BEGIN

ul: lpm_ram_dq GENERIC MAP(lpm_width, lpm_widthad)

 PORT MAP(<value>, <value>)

END <architecture_name>

The lpm_width parameter is the word width and the lpm_widthad
parameter is the address width. The PORT MAP statement lists the top-level
nodes that are connected to the LPM ports.

MAX+PLUS II

The Altera MAX+PLUS II development system supports the LPM
standard. You can enter an LPM function, such as LPM_RAM_DQ, using the
MAX+PLUS II Graphic Editor as shown in Figure 6.
6 Altera Corporation

AN 52: Implementing RAM Functions in FLEX 10K Devices

Figure 6. Example of LPM_RAM_DQ in the MAX+PLUS II Graphic Editor

You can also enter LPM functions in the MAX+PLUS II software using the
Altera Hardware Description Language (AHDL) as shown in Figure 7.

Figure 7. Example of LPM_RAM_DQ in AHDL

<RAM_name>:LPM_RAM_DQ WITH
(

lpm_width=<value>-- word width
lpm_widthad=<value>-- address width

)

In addition to LPM functions, the MAX+PLUS II software supports
specialized functions, such as a cycle-shared FIFO function (CSFIFO) and
a cycle-shared dual-port RAM function (CSDPRAM), that take advantage of
EAB architectural features not supported by the LPM.

Synopsys & Viewlogic Tools

You can efficiently use the FLEX 10K EAB in VHDL designs with
Synopsys or Viewlogic tools and the Altera software utility genmem,
which is provided with workstation versions of MAX+PLUS II. The
genmem utility generates a VHDL hollow-body symbol, including a port
description and symbol, and allows you to specify the parameters that
define the RAM functionality. You can then instantiate the hollow-body
symbol in an upper level VHDL design. Synopsys or Viewlogic tools
synthesize the design and pass the RAM symbol to the MAX+PLUS II
software for synthesis into the device. Including memory functions in a
FLEX 10K design with the genmem utility produces the same design
efficiency as entering the memory with LPM functions.

ADDRESS[LPM_WIDTHAD-1..0]

WE

CLK

Q[LPM_WIDTH-1..0]

LPM_WIDTHAD=
LPM_WIDTH=

LPM_RAM_DQ

DATA[LPM_WIDTH-1..0]
Altera Corporation 7

AN 52: Implementing RAM Functions in FLEX 10K Devices

Altera, MAX, MAX+PLUS, and FLEX are registered trademarks of Altera Corporation. The following are
trademarks of Altera Corporation: MAX+PLUS II, AHDL, and FLEX 10K. Altera acknowledges the
trademarks of other organizations for their respective products or services mentioned in this document,
specifically: Verilog and Verilog-XL are registered trademarks of Cadence Design Systems, Inc. Mentor
Graphics is a registered trademark of Mentor Graphics Corporation. Synopsys is a registered trademark of
Synopsys, Inc. Viewlogic is a registered trademark of Viewlogic Systems, Inc. Altera products are protected
under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera
warrants performance of its semiconductor products to current specifications in accordance with Altera’s
standard warranty, but reserves the right to make changes to any products and services at any time without
notice. Altera assumes no responsibility or liability arising out of the application or use of
any information, product, or service described herein except as expressly agreed to in
writing by Altera Corporation. Altera customers are advised to obtain the latest version of
device specifications before relying on any published information and before placing
orders for products or services.

Copyright 1996 Altera Corporation. All rights reserved.

2610 Orchard Parkway
San Jose, CA 95134-2020
(408) 894-7000
Applications Hotline:
(800) 800-EPLD
Customer Marketing:
(408) 894-7104
Literature Services:
(408) 894-7144

®

Conclusion You can use LPM functions with MAX+PLUS II or EDA tools, or you can
use the genmem software utility with Synopsys or Viewlogic tools to
efficiently implement powerful megafunctions, including RAM, in
FLEX 10K EABs. EABs offer the features and functionality that let you
implement RAM functions with minimal effort and give you the
flexibility to create the size and functionality you require.
8 Altera Corporation

Printed on Recycled Paper.

	Contents
	AN 52: Implementing RAM Functions in FLEX 10K Devices
	Introduction
	EAB Architecture
	Using EABs
	Cascading EABs for Wider RAM
	Multiplexing EABs for Deeper RAM
	Synchronous RAM
	Asynchrous RAM
	Emulating ROM

	Software Support
	MAX+PLUS II & Standard EDA Tools
	Synopsys & Viewlogic Tools

	Conclusion

